Strongyloides stercoralis age-1: A Potential Regulator of Infective Larval Development in a Parasitic Nematode

نویسندگان

  • Jonathan D. Stoltzfus
  • Holman C. Massey
  • Thomas J. Nolan
  • Sandra D. Griffith
  • James B. Lok
چکیده

Infective third-stage larvae (L3i) of the human parasite Strongyloides stercoralis share many morphological, developmental, and behavioral attributes with Caenorhabditis elegans dauer larvae. The 'dauer hypothesis' predicts that the same molecular genetic mechanisms control both dauer larval development in C. elegans and L3i morphogenesis in S. stercoralis. In C. elegans, the phosphatidylinositol-3 (PI3) kinase catalytic subunit AGE-1 functions in the insulin/IGF-1 signaling (IIS) pathway to regulate formation of dauer larvae. Here we identify and characterize Ss-age-1, the S. stercoralis homolog of the gene encoding C. elegans AGE-1. Our analysis of the Ss-age-1 genomic region revealed three exons encoding a predicted protein of 1,209 amino acids, which clustered with C. elegans AGE-1 in phylogenetic analysis. We examined temporal patterns of expression in the S. stercoralis life cycle by reverse transcription quantitative PCR and observed low levels of Ss-age-1 transcripts in all stages. To compare anatomical patterns of expression between the two species, we used Ss-age-1 or Ce-age-1 promoter::enhanced green fluorescent protein reporter constructs expressed in transgenic animals for each species. We observed conservation of expression in amphidial neurons, which play a critical role in developmental regulation of both dauer larvae and L3i. Application of the PI3 kinase inhibitor LY294002 suppressed L3i in vitro activation in a dose-dependent fashion, with 100 µM resulting in a 90% decrease (odds ratio: 0.10, 95% confidence interval: 0.08-0.13) in the odds of resumption of feeding for treated L3i in comparison to the control. Together, these data support the hypothesis that Ss-age-1 regulates the development of S. stercoralis L3i via an IIS pathway in a manner similar to that observed in C. elegans dauer larvae. Understanding the mechanisms by which infective larvae are formed and activated may lead to novel control measures and treatments for strongyloidiasis and other soil-transmitted helminthiases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphogenesis of Strongyloides stercoralis Infective Larvae Requires the DAF-16 Ortholog FKTF-1

Based on metabolic and morphological similarities between infective third-stage larvae of parasitic nematodes and dauer larvae of Caenorhabditis elegans, it is hypothesized that similar genetic mechanisms control the development of these forms. In the parasite Strongyloides stercoralis, FKTF-1 is an ortholog of DAF-16, a forkhead transcription factor that regulates dauer larval development in C...

متن کامل

Diverse Host-Seeking Behaviors of Skin-Penetrating Nematodes

Skin-penetrating parasitic nematodes infect approximately one billion people worldwide and are responsible for some of the most common neglected tropical diseases. The infective larvae of skin-penetrating nematodes are thought to search for hosts using sensory cues, yet their host-seeking behavior is poorly understood. We conducted an in-depth analysis of host seeking in the skin-penetrating hu...

متن کامل

Urocanic acid is a major chemoattractant for the skin-penetrating parasitic nematode Strongyloides stercoralis.

Host-seeking behavior by parasitic nematodes relies heavily on chemical cues emanating from potential hosts. Nonspecific cues for Strongyloides stercoralis, a nematode that infects humans and a few other mammals, include carbon dioxide and sodium chloride; however, the characteristic species specificity of this parasite suggested the existence of other, more specific cues. Here we show that the...

متن کامل

Recombinant cDNA clones for immunodiagnosis of strongyloidiasis.

Because diagnosis of strongyloidiasis by stool examination is unreliable and because of the potential for serious disease in Strongyloides infections, there is need for improved diagnostic aids to facilitate recognition and treatment of this parasitic infection. Serologic testing, when available, requires antigen preparation from infected primates or dogs that can be difficult to maintain. Seve...

متن کامل

RNAseq Analysis of the Parasitic Nematode Strongyloides stercoralis Reveals Divergent Regulation of Canonical Dauer Pathways

The infectious form of many parasitic nematodes, which afflict over one billion people globally, is a developmentally arrested third-stage larva (L3i). The parasitic nematode Strongyloides stercoralis differs from other nematode species that infect humans, in that its life cycle includes both parasitic and free-living forms, which can be leveraged to investigate the mechanisms of L3i arrest and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012